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We discovered a narrow band of chaos close to the grazing condition for a simple soft impact oscillator. The
phenomenon was observed experimentally for a range of system parameters. Through numerical stability
analysis, we argue that this abrupt onset to chaos is caused by a dangerous bifurcation in which two unstable
period-3 orbits, created at “invisible” grazings, take part.

DOI: 10.1103/PhysRevE.79.037201 PACS number�s�: 05.45.Ac

Physical systems undergoing intermittent contact with a
relatively rigid barrier are ubiquitous, since gaps can arise
through wear, limited tolerances in manufacture, motion out-
side of an anticipated regime, or as a design feature. We
experimentally demonstrate that such systems may exhibit a
peculiar dynamical behavior where the orbit abruptly jumps
to a large-amplitude chaotic motion close to a grazing con-
dition, which lasts for a very narrow range of the parameter.
We show that this phenomenon is caused by two unstable
periodic orbits, born at a different parameter value, which
remain unobserved until they precipitate a dangerous bifur-
cation �1�, causing the abrupt divergence of the orbit.

Many differing approaches exist to model impacting mo-
tion, and this is further complicated by the relative sparsity
of experiments. The archetype of impacting systems is a bi-
linear oscillator where the stiffness takes two distinct values.
When the ratio of these is high the contact can be well ap-
proximated by a rigid stop �2�. We undertook a systematic
investigation of such a system using an experimental impact-
ing system built in the University of Aberdeen, U.K., and
shown in Fig. 1. It is a vertically aligned mass-spring-damper
system with sinusoidal base excitation, and the mass can
impact upon a small bolt supported by another spring. The
full details of the experimental rig and measuring procedures
can be found in �3�. Experimental bifurcation diagrams were
constructed in the following way. First the nonimpacting lin-
ear response was established for sufficiently low excitation
frequency. The frequency was then incrementally increased
through the grazing conditions of the linear response and
beyond. For each chosen set of parameters a steady-state
response was reached prior to data capture. Next, a first re-
turn Poincaré map was constructed and projected onto the
displacement axis. The Poincaré plane was placed at various
phases �constant for each bifurcation diagram� in order to
maximize the separation between the points appearing on the
diagram.

The results were obtained for a natural frequency of 9.38
Hz, a gap of 1.26 mm, a damping coefficient of 1.3 kg/s and
secondary spring stiffness 29 times higher than that of the
main one. Bifurcation scenarios near grazing observed ex-
perimentally for excitation amplitude equal to 0.44, 0.66, and
0.70 mm are shown in Fig. 2. It is found that under different
parameter regimes the border collision bifurcation can result

in a transition from the nonimpacting period-1 orbit to an
impacting period-2 orbit �Fig. 2�a��, an impacting period-3
orbit �Fig. 2�b��, or an impacting period-1 orbit �Fig. 2�c��.
But in all these cases there is a narrow band of chaos close to
the grazing condition. This is observed for a variety of pa-
rameters and seems to be in some way generic.

The importance of a zero velocity “grazing” impact is
well established and manifests differently when the impact is
with a rigid or yielding barrier �4,5�. For instantaneous im-
pacts with a rigid stop the derived normal form map contains
a square-root term causing a singularity in the first derivative
and a corresponding stretching in one eigendirection. This
causes an abrupt loss in the stability, since at grazing one of
the eigenvalues jumps outside of the unit circle. In the case
of impact with an elastically yielding barrier the resulting
normal form map contains a 3/2 term �to lowest order� which
results in smooth derivatives and continuous eigenvalues. Al-
though it has been shown that the behavior becomes effec-
tively that of a square-root map for higher velocity impacts,
there is no loss of stability at the grazing conditions and
smooth bifurcations can occur �5�.

Thus in hard-impact oscillators, the orbit experiences a
high degree of stretching close to the grazing condition ow-
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FIG. 1. Schematic diagram of the experimental rig �3�.
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ing to the repeated application of the square-root map �5�.
One can expect a divergence away from the local attractor,
and the resulting attractor should have a fingered structure
comprising of the stretching direction in the Poincaré plane
and its forward iterates. In our experimental system, since
the spring in the support is much stiffer than the main one,
the map starts to demonstrate a similar stretching behavior
when the penetration becomes significant. Thus one can ex-
pect a sudden expansion of the attractor and the onset of
sensitive dependence on initial conditions shortly after the
grazing parameter value. This much can be inferred on the
basis of current knowledge. We have discovered that some-
thing in addition to the above is responsible for the creation
of the narrow-band chaos.

Theoretical investigations of the considered oscillator
were conducted using the nondimensionalized equations of
motion derived in �2,3�

x� = v ,

v� = a�2 sin���� − 2�v − x − ��x − e�H�x − e� , �1�

where x=y /x0 and v=dx /d� are nondimensional displace-
ment and velocity of the oscillator, �=2�fnt is nondimen-
sional time, fn= 1

2�
�k1 /m is the natural frequency for the

undamped linear system �in Hz�, x0 is some arbitrary refer-
ence distance, and H�·� is the Heaviside step function. Here
�=k2 /k1 is the stiffness ratio, �= f / fn is the frequency, e
=g /x0 is the gap, �=c / �4m�fn� is the damping ratio, and a
=A /x0 is the forcing amplitude—all in nondimensional form.

The bifurcation scenario corresponding to the one shown
in Fig. 2�a� was obtained numerically for �=0.01, �=29, e
=1.26, and excitation amplitude a=0.7 under varying exci-
tation frequency �, and it is presented in Fig. 3. Here addi-
tional windows showing the chaotic orbit at �=0.8023 �in
the Poincaré plane� and the period-2 orbit at �=0.84 �in

continuous time� demonstrate the good correspondence with
the experimental results.

Initially, for a nondimensional excitation amplitude a
=0.7 and nondimensional frequency �=0.76, the orbit is
nonimpacting. As the parameter � is increased, the period-1
orbit undergoes grazing at �=0.801 928. The grazing fre-
quency is calculated from the relation a�2

=e��1−�2�2+4�2�2, obtained using the exact solution of the
nonimpacting system equations.

FIG. 2. �Color online� Narrow band of chaos detected on bifurcation diagrams obtained for �a� excitation amplitude equal to 0.44 mm,
�b� excitation amplitude equal to 0.66 mm and �c� excitation amplitude equal to 0.70 mm. Additional windows show �a� the chaotic orbit in
the Poincaré section at f�7.60 Hz and the continuous-line orbit at 7.90 Hz, �b� the discrete-time chaotic orbit at f�6.50 Hz and the
phase-plane trajectory at 6.70 Hz, and �c� the discrete-time chaotic orbit at f�6.25 Hz and phase-plane trajectory at 6.65 Hz. The vertical red
lines indicate the switching manifold.

FIG. 3. �Color online� Numerically obtained bifurcation dia-
gram for the mass displacement under varying frequency � at �
=0.01, �=29, e=1.26, and excitation amplitude a=0.7. Additional
windows demonstrate the orbits for �=0.8023 and 0.84,
respectively.
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Just before grazing of the nonimpacting linear orbit, the
eigenvalues are 0.017 821� i0.924 468. Following grazing,
the eigenvalues still have modulus less than unity, and so the
orbit is stable. However, in the experiment described above,
we see the onset of a chaotic orbit at this point. Numerical
investigation shows that even though the orbit is stable, a
slight perturbation in the initial conditions makes the state
diverge from it and form a much larger chaotic orbit. As the
parameter is increased further, it is found that the period-1
orbit becomes unstable through a smooth period-doubling
bifurcation at 0.802 035 2. This results in the creation of a
stable period-2 orbit with two impacts. As the parameter is
further increased to �=0.802 074 7, the period-2 orbit un-
dergoes a boundary crisis induced by grazing. However, all
through this narrow range, we see the chaotic orbit.

These observations raise some natural questions. How can
the state move away from the periodic orbit that is stable?
What forms the chaotic orbit?

To probe this question, we have developed an algorithm
that can detect periodic orbits, possibly with multiple im-
pacts, irrespective of their stability through a Newton-
Raphson search procedure. In each step the Jacobian matrix
is composed of the exponential matrices for the passages
through the linear subsystems and saltation matrices for the
passages across the switching manifolds. As a parameter is
varied, the program can follow periodic orbits—stable or
unstable—where the location of the periodic orbit for any
parameter value is taken as the initial guess for the next
value.

For convenience of explanation, we first analyze the case
of hard impact, i.e., when the stiffness ratio tends to infinity.
We found that many other high-periodic orbits exist over a
parameter range that includes the grazing value, out of which
we concentrate on the evolution of the period-3 orbits shown
in Fig. 4 which is calculated for �=5000.

This figure reveals that long before the main period-1 or-
bit grazes the switching manifold, two period-3 orbits come
into existence at �1=0.760 761 39. At the point of birth, the
two orbits coincide in a grazing condition �the left inset of

Fig. 4�. Both the new-born period-3 orbits are unstable, and
that is why they are not observed in experiment or in the
usual numerical computation of the bifurcation diagram. This
grazing did not physically occur but could occur if the ap-
propriate parameters and initial conditions were chosen. We
shall call it an “invisible grazing,” which exerts significant
influence on the dynamics of the system. Note that in a
smooth system, pairs of periodic orbits can come into exis-
tence through a saddle-node bifurcation, and in that case one
of the orbits is stable. But in case of a nonsmooth system,
both the nascent periodic orbits can be unstable �6�.

As the parameter is varied, at �gr=0.801 928 the period-1
orbit grazes the switching boundary. This results in another
border collision bifurcation. At that point a strange event
takes place.

The stable manifold of one of the period-3 orbits �marked
as II� that was created at the invisible grazing forms the basin
boundary of the period-1 orbit. As the parameter approaches
the grazing value, the distance between the period-1 orbit
and the period-3 orbit reduces, and at the bifurcation point
the two orbits converge. As a result, at the bifurcation point
the basin of attraction shrinks to zero size. This phenomenon,
called dangerous bifurcation �1�, has been predicted from
theoretical considerations. We have thus found an example of
a physical system where a dangerous bifurcation occurs.

In the case of the system under consideration, since the
stiffness ratio is high, its behavior closely approximates that
of the hard-impact system. But since the wall is now com-
pliant, the map is smooth. This has the effect of smoothening
the bifurcations described above �see Fig. 5 calculated for
�=29�.

In this case the two period-3 orbits are born at �1
=0.761 8806 via a smooth saddle-node bifurcation close to
the point of invisible grazing. The node �branch I� loses sta-
bility shortly after—at �=0.761 958 through a period-
doubling bifurcation. The other unstable period-3 orbit
�branch II� approaches the period-1 orbit as the grazing pa-
rameter value �gr=0.801 928 is approached from below. An-
other unstable period-3 orbit �branch III in Fig. 5�, born via a
saddle-node bifurcation at �2, approaches from above. On a

FIG. 4. �Color online� Bifurcation diagram showing the evolu-
tion of the period-1 and period-3 orbits for the limiting case of
hard-impact system. The stable periodic orbit is denoted by black
and the two unstable period-3 orbits by red and green, respectively.
Left inset: the period-3 grazing orbit at �1=0.760 761 39. Right
inset: close-up of the bifurcation diagram close to the grazing point.

FIG. 5. �Color online� Bifurcation diagram showing the evolu-
tion of the period-1 and period-3 orbits in the soft impact system
with stiffness ratio 29. The stable period-1 orbit is denoted by blue,
stable period-3 orbits by black, and the two unstable period-3 orbits
by red and green.
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coarse scale the event at the grazing point looks the same as
that in Fig. 4, but the smoothening effect is revealed on close
inspection. The close-up of the bifurcation diagram �the inset
of Fig. 5� shows two smooth saddle-node bifurcations occur-
ring at very close parameter values, �3 and �4, connecting
unstable branches II and III with a stable period-3 orbit.
Close to the grazing parameter value of �gr, the unstable
period-3 orbit that forms the basin boundary comes very
close to the periodic orbit. Thus, while in the nonsmooth
approximation the distance between the fixed point and the
unstable period-3 orbit is ideally zero at the bifurcation
point; in the actual system there exists a very small but finite
distance. If the ambient noise in the system �which is always
present in a realistic situation� can perturb the state across the
basin boundary, the state diverges away from the fixed point.
Thus, even though the system is smooth in the ultimate
analysis, a condition similar to that in dangerous border col-
lision bifurcation is created.

The question is, where does it diverge to? Notice that
another unstable period-3 orbit �branch I in Fig. 5� exists at
this parameter value. While diverging away from the
period-1 fixed point when the state meets the unstable mani-
fold of this period-3 point, the further iterations are con-
strained to remain on this unstable manifold. Thus, abruptly
the unstable manifold of this period-3 fixed point becomes a
stable attractor. Figure 6 shows the structural similarity be-
tween the unstable manifold of the period-3 saddle point
�calculated using the DYNAMICS software �7�� and the chaotic
orbit. Note that this narrow-band chaotic orbit was possible
due to the existence of the unstable period-3 orbits, which, in
turn, was caused by the invisible grazing in the hard-impact
case or its smooth approximation in the soft impact case.

The unstable period-3 orbit subsequently becomes stable
through a reverse period-doubling bifurcation �see the black
portion in Fig. 5�. This orbit and the unstable period-3 orbit
created at �3 merge and disappear at a smooth saddle-node

bifurcation at the parameter value �2. If the parameter is
reduced from this value, the stable period-3 orbit is seen to
undergo a smooth period-doubling cascade with periodicities
3, 6, 12, 24, 48, 96, and 192 with a Feigenbaum number of
4.669 201 609. . .; but then the orbit expands to a larger cha-
otic orbit. This is caused by an interior crisis, where a point
of the periodic orbit touches the stable manifold of the other
period-3 saddle.

Thus the chaotic orbit occurs for the narrow band of pa-
rameters from ��0.801 928 up to the parameter value of the
interior crisis �=0.802 645. Our investigation of the other
parameter ranges shows that the above mechanism is a ge-
neric one wherever the narrow band of chaos is observed
close to grazing in an impacting system and that the occur-
rence of dangerous bifurcation has to be considered in addi-
tion to the stretching behavior predicted by the structure of
the Poincaré map to obtain a complete explanation of the
observed phenomenon.

J.I. and E.P. would like to acknowledge the financial sup-
port from EPSRC under Grant No. EP/E011535.

�1� M. A. Hassouneh, E. H. Abed, and H. E. Nusse, Phys. Rev.
Lett. 92, 070201 �2004�; A. Ganguli and S. Banerjee, Phys.
Rev. E 71, 057202 �2005�.

�2� S. W. Shaw and P. J. Holmes, J. Sound Vib. 90, 129 �1983�.
�3� J. Ing, E. E. Pavlovskaia, M. Wiercigroch, and S. Banerjee,

Philos. Trans. R. Soc. London, Ser. A 366, 1866 �2008�; M.
Wiercigroch and V. W. T. Sin, ASME J. Appl. Mech. 65, 657
�1998�.

�4� A. B. Nordmark, J. Sound Vib. 145, 279 �1991�; H. Dankow-
icz and A. B. Nordmark, Physica 136D, 280 �2000�; J. Mo-

lenaar, J. G. de Weger, and W. van de Water, Nonlinearity 14,
301 �2001�; P. Thota and H. Dankowicz, Physica D 214, 187
�2006�.

�5� M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowal-
czyk, Piecewise-smooth Dynamical Systems: Theory and Ap-
plications �Springer-Verlag, New York, 2008�.

�6� S. Banerjee and C. Grebogi, Phys. Rev. E 59, 4052 �1999�.
�7� H. E. Nusse and J. A. Yorke, Dynamics: Numerical Explora-

tions �Springer-Verlag, New York, 1998�.

FIG. 6. �a� Unstable manifold for period-3 attractor at �
=0.802 and �b� chaotic attractor at the same frequency.
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